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A B S T R A C T   

To best interact with the external world, humans are often required to consider the quality of their actions. 
Sometimes the environment furnishes rewards or punishments to signal action efficacy. However, when such 
feedback is absent or only partial, we must rely on internally generated signals to evaluate our performance (i.e., 
metacognition). Yet, very little is known about how humans form such judgements of sensorimotor confidence. 
Do they monitor their actual performance or do they rely on cues to sensorimotor uncertainty? We investigated 
sensorimotor metacognition in two visuomotor tracking experiments, where participants followed an un-
predictably moving dot cloud with a mouse cursor as it followed a random horizontal trajectory. Their goal was 
to infer the underlying target generating the dots, track it for several seconds, and then report their confidence in 
their tracking as better or worse than their average. In Experiment 1, we manipulated task difficulty with two 
methods: varying the size of the dot cloud and varying the stability of the target's velocity. In Experiment 2, the 
stimulus statistics were fixed and duration of the stimulus presentation was varied. We found similar levels of 
metacognitive sensitivity in all experiments, which was evidence against the cue-based strategy. The temporal 
analysis of metacognitive sensitivity revealed a recency effect, where error later in the trial had a greater in-
fluence on the sensorimotor confidence, consistent with a performance-monitoring strategy. From these results, 
we conclude that humans predominantly monitored their tracking performance, albeit inefficiently, to build a 
sense of sensorimotor confidence.   

1. Introduction 

Sensorimotor decision-making is fundamental for humans and ani-
mals when interacting with their environment. It determines where we 
look, how we move our limbs through space, or what actions we select 
to intercept or avoid objects. In return, we may receive decision feed-
back from the environment, such as resources, knowledge, social 
standing, injury, or embarrassment. The outcomes of an action are often 
crucial for determining subsequent sensorimotor decision-making, 
particularly in dynamic scenarios where a series of actions are chained 
together to achieve a sensorimotor goal (e.g., dancing or tracking a 
target). But what happens if external feedback is absent, partial, or 
significantly delayed? How then do we judge if an action has been 
performed well? One possible solution is for the person to form their 
own subjective evaluation of sensorimotor performance using whatever 
sensory or motor signals are available. These metacognitive judgements 

reflect the person's confidence that their action or series of actions were 
correct or well-suited to their sensorimotor goal. Yet, despite such 
judgements being a familiar and everyday occurrence, they have re-
ceived relatively little direct scientific scrutiny. 

Before surveying the scientific context for the current study, it is 
imperative we clearly define sensorimotor confidence. We consider three 
components necessary for the formation of sensorimotor confidence, 
illustrated in Fig. 1. First, there must be sensory inputs relevant for 
action selection and a consideration of the perceptual uncertainty or 
error of these inputs when assigning confidence. That is, sensory signals 
weakened by external or internal noise (e.g., foggy day, low attentional 
resources) should negatively affect confidence. However, it is important 
to note that observers may hold false beliefs about their sensory ob-
servations, which should be reflected in their subjective evaluations. 
The second crucial element is the performed action, with a considera-
tion of the specific action taken (i.e., motor awareness) and an estimate 
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of uncertainty or error in the action execution. Decreased motor 
awareness or experience of large motor noise should decrease sensor-
imotor confidence, unless the actor holds false beliefs. Evaluations of 
motor performance can come from various sources of information, from 
motor commands, proprioception, or self-observation of the action with 
one of the senses (e.g., seeing one's own hand during a reach). Finally, 
there must be a consideration of the sensorimotor goal, the objective for 
purposeful action, which defines the landscape of success and failure for 
the individual. First, the consequences of error may be asymmetric or 
lead to varying outcomes (e.g., stopping short of an intersection versus 
going too far; for an example of the effect of an asymmetric loss func-
tion, see Mamassian & Landy, 2010), so sensorimotor goals should be 
selected by appropriately factoring in the consequences of different 
potential outcomes (Trommershäuser et al., 2008). Alternatively, an 
entirely wrong goal can be selected, leading to errors even when actions 
are well-executed under ideal viewing conditions (e.g., mistakenly 
trying to unlock a car that is not yours but looks similar). From a more 
subjective perspective, individuals may differ in terms of what is con-
sidered success or failure, such as the goals of novice sports players 
versus professionals, which colour their evaluations of performance. 
Thus, evaluating the sensorimotor goal itself should be considered part 
of sensorimotor confidence. We propose that subjective reports in the 
absence of any one of these three elements do not constitute sensor-
imotor confidence but rather different forms of confidence (e.g., per-
ceptual confidence, motor-awareness confidence, etc.). 

Elements of sensorimotor confidence have been touched upon in a 
variety of domains, highlighting many of brain's sophisticated mon-
itoring and control processes that operate on internally-gathered in-
formation (see Fig. 1 for a summary). For the highest level of proces-
sing, there is the study of cognitive control, which describes how the 
goals or plans translate into actual behaviour. It is thought that cog-
nitive control is responsible for the appropriate deployment of atten-
tion, as well as voluntary selection, initiation, switching, or termination 
of tasks (Alexander & Brown, 2010; Botvinick et al., 2001; Norman & 
Shallice, 1986). At the lowest level of processing, there is the study of 
sensorimotor control. Usually, research questions focus on how the 
brain senses discrepancies between the intended outcome of motor 
commands, as specified by an internal model, and the actual action 
outcomes, that are processed as a feedback signal, to correct and update 
subsequent motor control signals (Todorov, 2004; Wolpert et al., 1995). 
While the understanding of sensorimotor processes is quite advanced, 
both at the behavioural and neural levels, very little is known about our 
ability to consciously monitor sensorimotor performance. 

If the action is reduced to a simple report of what is perceived, the 
monitoring of sensorimotor performance reduces to the study of per-
ceptual confidence (Fleming & Dolan, 2012; Mamassian, 2016; Pleskac 

& Busemeyer, 2010). Perceptual confidence is a metacognitive process 
that corresponds to the subjective sense of the correctness of our per-
ceptual decisions (Galvin et al., 2003; Pouget et al., 2016). Human 
observers exhibit considerable sensitivity to the quality of the proces-
sing of sensory information and the resulting ability to predict the 
correctness of a perceptual choice (Adler & Ma, 2018; Barthelmé & 
Mamassian, 2010; Kiani et al., 2014). However this so-called Type-2 
judgement often incurs additional noise, on top of the sensory noise 
that impairs perceptual performance (Type-1 decisions) (Maniscalco & 
Lau, 2016). More recently, researchers have considered the contribu-
tion of motor factors in perceptual confidence (Fleming & Daw, 2017;  
Kiani et al., 2014; Yeung & Summerfield, 2012). Such elements are 
crucial, for example, for the observer to respond “low confidence” on 
lapse trials where they are sure they mistakenly pressed the wrong key. 
In other examples, motor behaviour is used as an index of perceptual 
confidence by tracking hand kinematics while observers report their 
perceptual judgement (Dotan et al., 2018; Patel et al., 2012; Resulaj 
et al., 2009). However, these noted contributions are often restricted to 
simple motor behaviours, and do not take into account sources of re-
sponse variability from action execution. 

Motor awareness, the degree to which we are conscious of the ac-
tions we take (Blakemore et al., 2002; Blakemore & Frith, 2003), is also 
likely to contribute to sensorimotor confidence. Not all actions are 
consciously monitored, and it is a common experience to act without 
conscious control. For example, when we are walking, we are not al-
ways thinking of exactly how to place one foot in front of the other. Yet, 
for other actions, we must consciously attend to them, such as threading 
a sewing needle. A seminal study on motor awareness by Fourneret and 
Jeannerod (1998) found poor introspective ability for the action made 
when an unseen hand movement is perturbed by a horizontal dis-
placement in the visual feedback signal. Participants discount their 
compensatory actions and instead indicated that their hand position 
followed a trajectory much like the perturbed cursor. Follow-up studies 
have modified the response to be a binary motor-awareness decision 
(e.g., “Was feedback perturbed or not?”) followed by a confidence 
rating (Bègue et al., 2018; Sinanaj et al., 2015). Another motor- 
awareness study measured confidence ratings following a judgement of 
whether a visual dot was flashed ahead or behind their finger position 
during up-down movement (Charles et al., 2020). However, none of 
these measurements of confidence correspond to sensorimotor con-
fidence as we have defined it. Motor-awareness confidence reflects the 
knowledge held about the executed actions but lacks the sensory and 
goal components of sensorimotor confidence. To our knowledge, the 
only study to ask participants to explicitly reflect on their sensorimotor 
performance was by Mole et al. (2018), who had participants perform a 
virtual driving task. Green lines were placed on the road to indicate a 

Fig. 1. Components of sensorimotor control (left) and related topics in the literature (right). Sensorimotor confidence is a subjective evaluation of how well 
behaviour fulfilled the sensorimotor goal, considering both sensory and motor factors. The topic of sensorimotor confidence is complementary to the discussions of 
cognitive control, perceptual confidence, motor awareness, uncertainty, and self-generated feedback. It is likely that cues to difficulty and performance, that are 
responsible for the computation of sensorimotor confidence, originate both from sensory and motor sources. The former cues are prospective as they are related to 
how well the acting agent can potentially perform, whereas the latter are retrospective, they become available only after the action has occurred. 
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good-performance zone, and after completing the trial, they were asked 
to report the percentage of time they spent in the green zone (i.e., a 
continuous measure of sensorimotor confidence). They found that 
correspondence between objective performance and sensorimotor 
confidence roughly followed difficulty of the task but was otherwise 
limited. 

The study of sensorimotor confidence should also be contrasted with 
the mere knowledge of sensorimotor uncertainty in the absence of any 
particular instance of sensorimotor control (Augustyn & Rosenbaum, 
2005). In theory, this can be studied by examining how knowledge of 
variability from sensory, motor, and task sources influences the action- 
selection process in motor decision-making (Wolpert & Landy, 2012). 
The majority of studies support the hypothesis that humans plan actions 
consistent with accurate knowledge of their sensorimotor uncertainty 
(e.g., Augustyn & Rosenbaum, 2005; Bonnen et al., 2015; Stevenson 
et al., 2009; Trommershäuser et al., 2008), with some exceptions (e.g.,  
Mamassian, 2008; Zhang et al., 2013). However, the degree to which 
this knowledge is consciously available to the person is highly deba-
table (Augustyn & Rosenbaum, 2005). Furthermore, judgements of 
one's uncertainty in a planned action only allow one to predict the 
probability of a successful outcome. In this sense, they can act as pro-
spective confidence judgements before the action is taken, but do not 
constitute retrospective confidence judgements made by reflecting on 
sensorimotor behaviour from performance monitoring. For example, 
one would typically have more prospective confidence for riding a bi-
cycle than a unicycle. This belief is not derived from performance 
monitoring but rather from experience-informed expectation. In other 
areas of metacognitive research, such use of uncertainty information or 
other predictions of task difficulty are considered heuristics that can 
even impair the relationship between objective performance and con-
fidence (e.g., Charles et al., 2020; De Gardelle & Mamassian, 2015;  
Mole et al., 2018; Spence et al., 2015). Thus, it is desirable to identify 
the degree to which sensorimotor confidence is based on conscious 
monitoring of performance from feedback cues versus prospective 
judgements of performance based on uncertainty cues. 

Here, we report on two experiments explicitly measuring sensor-
imotor confidence in a visuomotor tracking task using a computer 
display and mouse. In both experiments, participants manually tracked 
an invisible target that moved horizontally by inferring its location 
from a noisy sample of evidence in the form of a twinkling dot cloud. 
The trajectory of the target was unpredictable as its velocity profile was 
generated by a random-walk algorithm. A dynamic task was selected to 
mirror the sensorimotor goals typically encountered in the real world. 

After tracking, participants reported their sensorimotor confidence 
by subjectively evaluating their tracking performance with a relative 
judgement of “better” or “worse” than their average. This confidence 
measure differs from that typically used in perceptual confidence 
(Mamassian, 2020). For a perceptual judgement in a typical psycho-
physical experiment, there are only two choice outcomes, correct or 
incorrect, and the confidence report solicited by the experimenter re-
flects the belief in the correctness (Pouget et al., 2016). If given a full- 
scale confidence measure ranging from 0% to 100% (Weber & Brewer, 
2003), participants can use the low end of the scale to report they are 
sure to be incorrect. In contrast, when given a half-scale ranging from 
50% to 100%, the low end of the scale collapses both the “correct- 
unsure” and “incorrect-sure” responses. Sensorimotor decisions, how-
ever, do not produce binary outcomes (correct/incorrect). Rather, they 
produce continuous outcomes (e.g., 1 deg of error, 2 deg, etc.) and will 
almost always have some amount of error. Knowing that interpreting 
calibration judgements is not very straightforward (Fleming & Lau, 
2014), we did not ask participants to report perceived error on a con-
tinuous scale. Instead, we opted for the simpler request that participants 
perform a median split of better/worse performance, turning the con-
fidence judgement into a binary judgement. How does this map onto 
low-error/high-error (like correct and incorrect for perceptual deci-
sions) and sure/unsure? If they are sure of lower-than-average error or 

higher-than-average error they would just report “worse” or “better”. In 
the case they were unsure, they should essentially flip a coin, because 
they do not know. Thus, our measure is more akin to a full-scale jud-
gement with only two choice categories, and not the half scale you 
would get for a high/low confidence judgement. Our measure allowed 
us to assess the correspondence between true performance and sub-
jective performance. 

In Experiment 1, trials differed in terms of the uncertainty in target 
location. We used two manipulations to achieve this: varying the size of 
the dot cloud (i.e., dot-sample noise), and varying the stability of the 
target's velocity (i.e., random-walk noise). In Experiment 2, we ma-
nipulated only the stimulus-presentation duration to introduce un-
certainty about when the confidence response would be required. We 
had several goals in this study: 1) to test whether humans are able to 
make reasonable sensorimotor confidence judgements from monitoring 
performance-error signals rather than relying only on uncertainty-based 
expectations; 2) to quantify how well sensorimotor confidence reflected 
objective performance; and 3) to examine how error information at 
different moments in time contributes to the final sensorimotor con-
fidence judgement. 

2. Experiment 1 

Experiment 1 sought to measure sensorimotor confidence in a vi-
suomotor tracking task and establish a metric of metacognitive sensi-
tivity that quantified how well the confidence judgements corre-
sponded to objective tracking performance. Difficulty in the task was 
manipulated in the cloud-size session by varying the external noise of 
the sensory evidence indicating the target location. In the velocity-sta-
bility session, we varied the degree of noise in the target's horizontal 
trajectory. To investigate the error evidence contributing to the sen-
sorimotor confidence, we investigated the temporal pattern of meta-
cognitive sensitivity, applying our metric to 1 s time bins within the 
trial. 

2.1. Methods 

2.1.1. Participants 
Thirteen naive participants (23–35 years old, two left-handed, four 

female) took part in the study. All had normal or corrected-to-normal 
vision and self-reported normal motor functioning. They received de-
tails of the experimental procedures and gave informed consent prior to 
the experiment. Participants were tested in accordance with the ethics 
requirements of the École Normale Supérieure and the Declaration of 
Helsinki. 

2.1.2. Apparatus 
Stimuli were displayed on a V3D245 LCD monitor (Viewsonic, Brea, 

CA; 52 × 29.5 cm, 1920 × 1080 pixels, 60 Hz). Participants sat 
46.5 cm from the monitor with their head stabilised by a chin rest. 
Manual tracking was performed using a Logitech M325 wireless optical 
mouse (60 Hz sampling rate, standard acceleration profile for Mac OS 
X), operated by the participant's right hand. Subjective assessments of 
performance were reported on a standard computer keyboard with the 
left hand. The experiment was conducted using custom-written code in 
MATLAB version R2014a (The MathWorks, Natick, MA), using 
Psychtoolbox version 3.0.12 (Brainard, 1997; Kleiner et al., 2007; Pelli, 
1997). 

2.1.3. Dot-cloud stimulus 
On every frame, the horizontal and vertical coordinates of two 

white dots were drawn from a 2D circularly symmetric Gaussian gen-
erating distribution with standard deviation σcloud. The mean of the 
distribution was the tracking target, which was invisible to observers 
and must be inferred from the dot cloud. Each dot had a one frame 
lifetime and two new dots were drawn every frame. Due to the 
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persistence of vision, participants had the impression of seeing up to 10 
dots at any one time (Fig. 2A). Dots had a diameter of 0.25 deg and 
were presented on a mid-grey background. Dots were generated using 
Psychtoolbox functions that rendered them with sub-pixel dot place-
ment and high-quality anti-aliasing. The horizontal position of the 
target changed every frame according to a random walk in velocity 
space (Fig. 2B): vt+1 = vt + ϵ and ~ (0, )walkN deg/s. This gave the 
target momentum, making it more akin to a real-world moving target 
(Fig. 2C). Both the target and the black cursor dot (diam.: 0.19 deg) 
were always centred vertically on the screen. The cursor could not 
deviate vertically during tracking (i.e., any vertical movements of the 
mouse were ignored in the rendering of the cursor icon) and partici-
pants were informed of this during training. Trajectories that caused the 
target to move closer than 2 × max (σcloud) from the screen edge were 
discarded and resampled prior to presentation. 

2.1.4. Task 
The trial sequence (Fig. 2D) began with a red dot at the centre of the 

screen. Participants initiated the tracking portion of the trial by moving 
the black cursor dot to this red dot, causing the red dot to disappear. 
The dot-cloud stimulus appeared immediately, with the target centred 
horizontally. The target followed its horizontal random walk for 10 s. 
Then, the participant made a subjective assessment of tracking perfor-
mance while viewing a blank grey screen, reporting by keypress whe-
ther they believed their tracking performance was better or worse than 
their session average. 

The experiment was conducted in two 1-hour sessions on separate 
days. In the “cloud size” session, the standard deviation of the dot 
cloud, σcloud, was varied from trial to trial (5 levels: 1, 1.5, 2, 2.5, and 
3 deg) and the standard deviation of the random walk, σwalk, was fixed 
at 0.15 deg/s. In the “velocity stability” session, σwalk was varied (5 
levels: 0.05, 0.10, 0.15, 0.20, and 0.25 deg/s) and σcloud was fixed at 
2 deg. Examples of the stimuli for both sessions are provided as 

Supplementary media files. The order of sessions was counterbalanced 
across participants to the best extent possible. Each session began with 
a training block (20 trials, 4 per stimulus level in random order), where 
only tracking responses were required. The training trials allowed 
participants to become familiar with the stimulus and set-up, and to 
form an estimate of their average performance. The main testing session 
followed (250 trials, 50 per stimulus level in random order). For the 
second session, participants were instructed to form a new estimate of 
average performance, and not to rely on their previous estimate. 

2.1.5. Grading objective performance 
For our analyses, we used root-mean-squared-error (RMSE) in deg 

as our measure of tracking error, calculated from the horizontal dis-
tance between the target (i.e., the current distribution mean) and the 
cursor. For the purposes of feedback, the tracking performance on each 
trial was converted to a score according to the formula 
points = 100 − 30 × RMSE. Typical scores ranged from 60 to 80 
points. Every 5 trials, the average score for the previous 5 trials was 
reported. This feedback was provided for both training and test trials. 
Presenting the average score served several purposes. The primary 
purpose of the feedback was to focus the efforts of participants on their 
tracking, thus discouraging them choosing ahead of time whether the 
trial was to be “better” or “worse” and executing tracking to match their 
metacognitive rating. Feedback also could have encouraged consistent 
performance across the session and helped participants to maintain a 
calibrated internal estimate of average performance. At the end of a 
session, participants were shown their cumulative score for that session 
and ranking on a performance leaderboard. 

2.1.6. Metacognitive sensitivity metric 
To examine sensorimotor confidence, we sought a metacognitive 

sensitivity metric that reflected how well the confidence reports dis-
criminated good from bad tracking performance (i.e., low versus high 

Fig. 2. Visuomotor tracking task. A: The “twinkling” dot cloud stimulus (white), generated by drawing two dots per frame from a 2D Gaussian generating dis-
tribution. Red: mean and 1 SD circle, which were not displayed. Black: mouse cursor. The dots provided sensory evidence of target location (generating distribution 
mean). As illustrated, more than two dots were perceived at any moment due to temporal averaging in the visual system. B: Example target random-walk trajectory in 
velocity space. C: The corresponding horizontal trajectory of the target. D: Trial sequence. Trials were initiated by the observer, followed by 10 s of manual tracking 
of the inferred target with a computer mouse. Then, participants reported their sensorimotor confidence by indicating whether their performance on that trial was 
better or worse than their average. Objective performance feedback was provided intermittently including average points awarded and a final leaderboard. Difficulty 
manipulations: cloud size and velocity stability were varied in separate sessions. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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RMSE). This concept is similar to the one used in perceptual confidence, 
where metacognitive sensitivity refers to a person's ability to distin-
guish correct from incorrect decisions (Fleming & Lau, 2014). As the 
outcome of tracking was not binary (e.g., correct vs. incorrect), we 
considered the objective tracking performance within a trial relative to 
all trials within the session performed by that participant. We con-
structed two objective-performance probability distributions condi-
tioned on the sensorimotor confidence: one distribution for trials fol-
lowed by a “better than average” response and one for “worse than 
average” responses (Fig. 3A–B). A high overlap in these conditional 
distributions would reflect low metacognitive sensitivity as this means 
objective performance is a poor predictor of the participant's evaluation 
of their performance. Conversely, low overlap indicates high meta-
cognitive sensitivity. We used an empirical Receiver Operating Char-
acteristic (ROC) curve, also known as a quantile-quantile plot (Fig. 3C), 
for a non-parametric measure of metacognitive sensitivity that reflected 
the separation of these distributions, independent of any specific cri-
terion for average performance. As shown in Fig. 3D, completely 
overlapping distributions would fall along the equality line in a ROC 
plot, resulting in an Area Under the ROC curve (AUROC) of 0.5. In 
contrast, complete separation would yield an AUROC of 1. An ad-
vantage of this technique over methods that rely on averaging (e.g., 
classification images) is that this method is suitable for continuous 
performance distributions of any shape (e.g., skewed). There are two 
things worth noting about the interpretation of this metric. First, this is 
not the ROC method other researchers typically use to measure per-
ceptual confidence (Barrett et al., 2013; Fleming & Lau, 2014). AUROC 
has, however, been used previously to explore the relationship between 
choice correctness and continuous confidence ratings as well as reaction 
times (Faivre et al., 2018). Second, our AUROC measure has the fol-
lowing interpretation: if the experimenter was given the RMSE of two 
trials and was told one was rated “worse” and the other “better”, the 
AUROC would reflect the probability of correctly inferring that the 
objectively better trial of the two was rated as “better” by the partici-
pant. 

2.2. Results 

2.2.1. Confirming the difficulty manipulation 
We first examined whether the difficulty manipulation affected 

objective tracking performance. Fig. 4A shows the mean RMSE for each 
stimulus level for the two difficulty manipulations. Qualitatively, the 
difficulty levels appear matched for most participants: performance 
curves follow the equality line. To check this result, we fit a linear 
mixed-effects model (LMM) to the RMSE values of each trial. The fixed 
effects in the model were difficulty manipulation (cloud-size or velo-
city-stability), stimulus difficulty (five levels), trial number, and an 
intercept term. The random effect was the participant affecting only the 
intercept term. Trial number was included to test whether learning 
occurred during the experiment. An analysis of deviance was performed 
using Type II Wald chi-square tests, revealing several significant effects. 
As expected, difficulty level had a significant effect on tracking per-
formance (χ2 = 3044.40, p  <  0.05), with larger RMSE for more dif-
ficult trials. This confirms that the difficulty manipulations had the 
desired effect on tracking performance. We also found that the cloud- 
size difficulty manipulation had significantly higher tracking error than 
velocity-stability (χ2 = 15.34, p  <  0.05), indicating that tracking in 
the velocity-stability session was easier than in the cloud-size session. 
There was no significant interaction between difficulty manipulation 
and stimulus level (p  >  0.05). Trial number also had a significant 
effect on performance (χ2 = 5.25, p  <  0.05), with later trials having 
larger error. This suggests training trials were likely sufficient for per-
formance to stabilise prior to the main task, but fatigue likely affected 
performance later in the session. 

2.2.2. Overall metacognitive accuracy 
Next, we examine metacognitive accuracy, which is the percentage 

of trials correctly judged as better or worse than average. Performance 
in both sessions was significantly better than chance (cloud-size session: 
64.4  ±  1.2% correct; velocity-stability session: 64.7  ±  2.3%). The 
accuracy results for each session are contrasted in Fig. 4B. Four parti-
cipants had significantly higher accuracy in the cloud-size session, ac-
cording to the 95% binomial error confidence intervals, and four 

Fig. 3. A metacognitive sensitivity metric. A: Example of tracking error within a trial. Root-mean-squared-error (RMSE, dashed line) was the objective performance 
measure. B: Example participant's objective-error distributions, conditioned on sensorimotor confidence, for all trials in the variable cloud-size session. True average 
performance (dashed line) indicates the ideal criterion. Smaller RMSE tended to elicit “better” reports, and larger RMSE “worse”. C: Metacognitive sensitivity was 
quantified by the separation of the conditional objective-error distributions with a non-parametric calculation of the Area Under the ROC (AUROC) using a quantile- 
quantile plot. At every point along the objective-performance axis, the cumulative probability of each conditional error distribution was contrasted. D: The area under 
the resulting curve is the AUROC statistic, with 0.5 indicating no meta-cognitive sensitivity and 1 indicating maximum sensitivity. The greater the separation of the 
conditional distributions, the more the objective tracking performance was predictive of sensorimotor confidence, and thus the higher the metacognitive sensitivity. 
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participants were significantly more accurate in the velocity-stability 
session. Overall, evaluation of tracking performance was similar in the 
two conditions. However, this accuracy metric may be subject to re-
sponse bias. Therefore, we examined meta-cognitive sensitivity. 

2.2.3. Overall metacognitive sensitivity 
The pattern of results for metacognitive sensitivity (AUROC, see 

Methods) was similar to the one found for metacognitive accuracy. 
Metacognitive sensitivity is contrasted between the sessions in Fig. 4C 
and the individual ROC-style curves for the cloud-size and velocity- 
stability sessions are shown in Fig. 4D and E, respectively. Almost all 
participants displayed some degree of metacognitive sensitivity in both 
sessions (i.e., have ROC-style curves above the equality line). On 
average, the AUROC in the cloud-size session was 0.68  ±  0.02 
(mean  ±  SEM) and was 0.68  ±  0.03 for the velocity-stability session. 
At the group level, a Wilcoxon's Matched-Pairs Signed-Ranks Test re-
vealed no significant difference between AUROCs from the two sessions 
(n = 13, T = 45, p  >  0.05). To examine the sensitivity at the in-
dividual subject level, we performed a bootstrap procedure in which the 
AUROC was computed for each participant 1000 times, sampling from 
their trial set with replacement, allowing us to calculate 95% con-
fidence intervals for our estimates (Fig. 4C). Four participants were 
significantly more sensitive in the velocity-stability session, three were 
significantly more sensitive in the cloud-size session, and the remaining 
six showed no significant difference between the two conditions. It is 

unlikely that these results are due to a learning effect across sessions: 
four of the seven significant results come from greater meta-cognitive 
accuracy in the first session completed. Another consideration is the 
amount of variability in performance for each individual and session. A 
highly variable participant may have a higher metacognitive sensitivity 
score because distinguishing better from worse performance is easier if 
a better trial differs more, on average, from a worse trial (Rahnev & 
Fleming, 2019). Also, variance could have differed between the two 
difficulty manipulations, affecting within-participant comparisons of 
metacognitive sensitivity. To examine this we fit a GLMM of the AUROC 
with participant as the random effect (intercept term only), and fixed 
effects of RMSE variance (pooled across difficulty levels), difficulty 
manipulation, and an intercept term. We found no significant effect of 
any of our predictors. To check the strength of the non-significant re-
lationship between variance and metacognitive sensitivity, we calcu-
lated the Bayesian Information Criterion (BIC) for this linear model and 
compared it to the same model without trial variance as a predictor. 
This simplified model had a lower BIC score (ΔBIC = 5.35), supporting 
the claim that performance variance has little influence on metacog-
nitive sensitivity. 

2.2.4. Temporal profile of metacognitive sensitivity 
We conducted an analysis of metacognitive sensitivity for each 1 s 

time bin within the 10 s trial to examine the degree to which each 
second of tracking contributed to the final sensorimotor confidence 

Fig. 4. Comparable above-chance metacognitive sensitivity for cloud-size and velocity-stability difficulty manipulations in Experiment 1 (n = 13). A: Effect of 
difficulty manipulation on tracking error. Mean RMSE contrasted for equivalent difficulty levels in the variable cloud-size session and the variable velocity-stability 
session. Colour: difficulty level. Curves: individual participants. Dashed line: equivalent difficulty. B: Comparison of metacognitive accuracy for the two difficulty- 
manipulation techniques, pooled across difficulty levels. Data points: individual subjects. Dashed line: equivalent accuracy. Error bars: 95% binomial SE. Shaded 
regions indicate whether metacognitive accuracy was better for the cloud-size or velocity-stability session. C: Same as in (B) but comparing the sensitivity of the 
sensorimotor confidence judgement. Dashed line: equivalent sensitivity. Error bars: 95% confidence intervals by non-parametric bootstrap. D: ROC-style curves for 
individual participants in the cloud-size session, pooled across difficulty levels. Shading: AUROC of example observer. Dashed line: the no-sensitivity lower bound. E: 
Same as (D) for the velocity-stability session. Shading corresponds to the same example observer. 
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judgement. An AUROC of 0.5 indicates that error in that 1 s time bin 
has no predictive power for the metacognitive judgement; an AUROC of 
1 indicates perfect predictive power. Fig. 5A shows the results of this 
analysis. In both the cloud-size and the velocity-stability sessions there 
was a noticeable recency effect: error late in the trial was more pre-
dictive of sensorimotor confidence than error early in the trial. There 
was no discernible difference between the two difficulty manipulations, 
except for the first few seconds where early error was more predictive 
for the velocity-stability session. 

For comparison, we also computed the temporal AUROCs, replacing 
the participant's responses with simulated sensorimotor confidence 
judgements under two strategy extremes. Fig. 5B shows the AUROC 
time course for an ideal observer that had perfect knowledge of per-
formance (RMSE) and based the confidence judgement on whether the 
RMSE was truly better or worse than average (i.e., weighted all time 
points equally). After the first two seconds of tracking, the temporal 
AUROC is relatively level. Note that no time bin was perfectly pre-
dictive of the confidence judgement because the error within one 
second is not equivalent to the total error across the entire trial. Fig. 5C 
shows the AUROC time course for an observer that perfectly uses un-
certainty cues (i.e., cloud-size, velocity-stability) to judge the difficulty 
level of the trial and computes prospective confidence rather than ba-
sing the confidence judgement on performance monitoring. Again, no 
single time bin should be particularly informative if one is assessing a 
cue that does not disproportionately occur at or affect performance for 
one particular portion of the trial; such is the case with our difficulty 
manipulations. Note that for the cue-based heuristic-evaluation simu-
lation, confidence was coded as “worse” for the two hardest difficulty 

levels, “better” for the two easiest, and flipping a 50–50 coin for the 
middle difficulty level. Again, both temporal profiles are flat after the 
first 2 s. Neither perfect monitoring nor prospective confidence based 
on uncertainty cues produced the recency effect in measured meta-
cognitive behaviour. This result, however, is not trivial due to the 
complex correlation structure of the error signal, which we investigated 
next. 

Weighing all time points equally is only an optimal strategy if all 
time bins are equally predictive of trial-averaged performance. Error 
variability is one factor that can affect that: periods of low error vola-
tility have less impact on the predictive validity of a time bin for overall 
RMSE. Thus, a recency effect might be an optimal strategy if there is 
higher error volatility late in the trial. We found that error is overall 
lower and less variable before 2 s (Fig. 5D). This is because participants 
begin the trial by placing their cursor at the centre of the screen, where 
the target is located. After this initial 2 s, however, tracking error 
variability is relatively constant, indicating that all these time points are 
similarly informative about the final RMSE. Thus, error variance may 
explain why metacognitive sensitivity was reduced for the initial 2 s for 
the measured and simulated sensorimotor confidence, but it cannot 
explain the observed recency effect. Fig. 5E shows the autocorrelation 
of the signed error signal for each participant averaged across difficulty 
levels. This graph reveals that error is correlated up to ± 1 s and is 
slightly anti-correlated thereafter. Errors are necessarily related from 
moment to moment, due to the continuous nature of tracking. To re-
solve a tracking error, one needs to make a corrective action to com-
pensate. The anticorrelation is likely a result of such corrective actions.  
Fig. 5F shows that this salient autocorrelation up to ± 1 s is also present 

Fig. 5. Performance weighting over time for sensorimotor confidence in Experiment 1 (n = 13). A: AUROC analysis performed based on each 1-s time bin in the 
tracking period. Error bars: SEM across participants. Error later in the trial is more predictive of sensorimotor confidence as indicated by the higher AUROC. B: The 
same analysis as in (A) for an ideal observer that has perfect knowledge of the error and compares the RMSE to the average RMSE. C: Temporal analysis performed 
with simulated responses based on expected performance according to the heuristic of difficulty level for each difficulty manipulation (see text). D: Mean and 
variance of the RMSE between target and cursor. Mean RMSE plateaus between 1 and 2 s and remains stable for the remainder of the trial. Variance is also quite 
stable after 2 s. Error bars: SEM across participants. E: Autocorrelation of the tracking error signal for each subject and each session. F: Autocorrelation matrix of the 
1 s binned RMSE. Data pooled over trials, conditions, and participants. The correlation between time-bins is relatively low after 1 s. 
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between the RMSE of neighbouring 1 s time bins. These results indicate 
that some of the predictive power of error in one time bin may be at-
tributed to weighting of error in a neighbouring bin. Thus, if we ask for 
what additional variance is accounted for, starting with. the last bin, the 
recency effect would appear even stronger. 

2.2.5. Other performance metrics 
Our modelling thus far has been based on the error between the 

location of the target and the cursor placement. However, this is not a 
realistic model of how the participant perceives their error as they 
imperfectly infer target location from the dot cloud, which is pre-
dominately affected by the external noise σcloud. To model this percep-
tual process (Fig. 6A), we opted for a simple exponential filtering of the 
centroid signal (i.e., the mid-point of the two dots presented on each 
frame). The true centroid position is a reasonable input, given that 
humans perform well at static centroid estimation (Juni et al., 2010;  
McGowan et al., 1998). The smoothing aims to capture both the tem-
poral averaging in the visual system, which causes a cloud of 10 or so 
dots to be perceived, as well as the averaging across time for strategic 
decision-making (Bonnen et al., 2015; Kleinman, 1969). The current 
estimate of target position xt, is obtained by computing the weighted 
average at time t of the horizontal component of the current centroid, ct, 
with the previous estimate, xt 1: 

= +x c x^ (1 ) ^ .t t t 1 (1)  

The smoothing parameter, α, controls the steepness of the ex-
ponential. Larger α mean that current sensory evidence is weighted 
more than previous target estimates, and vice versa. The weighting is a 
trade-off that has to be balanced: averaging improves the amount of 
information contributing to the estimate, but too much averaging into 
the past leads to biased estimates. 

We selected the value of α that minimised the sum of squared errors 
between true target location and the model's estimate as a stand-in for 
the observer's estimate of the current location of the target. This was 
calculated separately for each stimulus level and condition (Fig. 6B). As 
expected, there is less smoothing (larger α) for the easy, small dot 
clouds than the more difficult, large dot clouds (smaller α). This is 
because accepting some history bias only makes sense when dealing 
with the noisier large dot clouds. The opposite pattern is true for the 
velocity-stability condition. If velocity stability is high (easy), it is safer 
to average further into the past to improve the estimate than if velocity 
stability is low (difficult). It is not simple to use the tracking time series 
to estimate the true perceptual smoothing performed by the observer as 
tracking actions are not smooth and continuous (Miall et al., 1993). 
However, we did find evidence of such a pattern of perceptual 
smoothing in the tracking lags by difficulty level (Fig. 6C). Tracking lag 
was computed per observer by finding the lag that maximised the cross- 
correlation between the velocity signal of the target and cursor. The 
pattern is the reverse of that seen in Fig. 6B: larger α means greater 
weight on the current estimate and therefore shorter tracking lags, as 

Fig. 6. Comparing metacognitive sensitivity with different error-estimation methods and performance criteria. A: Diagram of the exponentially-smoothed perceptual 
model. Input: horizontal position of the dot-cloud centroid, ct (i.e., dot midpoint on a single frame). The perceptual system smooths the signal by convolving with an 
exponential to produce the target estimate x . This is equivalent to the weighted sum of current input and previous estimate, xt 1, according to the smoothing 
parameter, α. Output: perceived error determines the motor response. B: Setting of α that minimises the difference between true and perceived target location for 
each difficulty level and condition. C: Tracking lag as a measure of perceptual smoothing. As per the expected effects of difficulty level on perceptual smoothing (B), 
we found the corresponding X pattern in average tracking lags measured by a cross-correlation analysis (see text for details). Note that a larger α means greater 
weight on the current estimate and therefore less tracking lag. D: Metacognitive sensitivity AUROC as measured under several error-estimation methods compared to 
the standard RMSE method reported throughout. Absolute: mean absolute error between target and cursor. Perceptual: error according to the perceptual model in (A) 
with α values from (B). Centroid: RMSE calculated using dot-cloud centroid rather than true target location. Positive values indicate that this method yields higher 
sensitivity than the standard method. E: Same as in (D) but testing different performance criteria, comparing to the true-average criterion reported throughout. 
Cumulative: average error on a per-trial basis ignoring future performance. Feedback: last 5-trial performance feedback as criterion. N-back: windowed average of 
last N trials. Optimal calculated as N between 1 and 100 that maximises the AUROC. F: Computed optimal N for each condition. Black: individual participants. Red: 
group mean  ±  SEM. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the estimate is less dependent on the history of the stimulus. 
When the AUROC was calculated from the trial RMSE according to 

the perceptual model, however, the results are only marginally im-
proved by at most 0.01 in the AUROC (Fig. 6D). In fact, using the RMSE 
based on the raw centroid signal or absolute tracking error also pro-
duced similar AUROC estimates, only slightly worse than the RMSE 
method. The relatively unchanging AUROC across these performance 
metrics is likely due to the high correlation between all of these error 
measures. As compared to the RMSE method, the correlations for the 
cloud-size condition are r = 0.98, 0.94, and 0.79 for absolute error, 
perceptual error, and centroid error respectively. For the velocity-sta-
bility condition, these are r = 0.98, 0.94, and 0.95. This is because all 
methods are measures of the mean performance, which will change 
little with unbiased noise if given sufficient samples (i.e., 10 s of 
tracking). Thus, we conclude that our AUROC statistic was a robust 
measure and that the overlap in the confidence-conditioned distribu-
tions is unlikely due to the selection of RMSE as the objective-perfor-
mance metric. 

Another assumption we made in our analysis of metacognitive 
sensitivity was that the average-performance criterion used by the 
participant was fixed. However, the participant may have used a dif-
ferent strategy for judging sensorimotor confidence, such as keeping a 
cumulative average, or relying on the most recent feedback, or con-
sidering only some recent history of trials. To investigate this possibi-
lity, we tested whether the participant's categorisation of “better” and 
“worse” trials was more consistent (i.e., less overlap of the confidence- 
conditioned distributions) if the error in the trial was compared only to 
the RMSE of previous trials and not simply the fixed sessional average 
of RMSE. Considering only the RMSE of previous trials necessarily leads 
to a fluctuating average, in contrast to considering both past and future 
performance, which leads to a fixed average RMSE. To be clear, com-
puting the relative RMSE of each trial according to a fluctuating 
average would change the shape of the confidence-conditioned dis-
tributions (Fig. 3B), but the AUROC calculation would still be per-
formed in the same manner (Fig. 3C). If the participant's sensorimotor 
confidence response used a criterion that tracked the real fluctuations 
in objective tracking performance, then the AUROC should be larger 
than our reported main results (Fig. 4C). We considered several po-
tential strategies for computing relative performance: a trial's RMSE 
could be compared to an average of all previous trials (“Cumulative”), 
to the average RMSE used to calculate the score in the most recent 5- 
trial performance feedback (“Feedback”), or to the RMSE average of 
only the most recent 5, 10 or best N trials (“5-Back”, “10-Back”, “Best 
N-Back”). The value of N for the Best N-back model was computed 
separately for each participant and session by finding the size of tem-
poral-averaging window that maximised the AUROC. The metacogni-
tive sensitivity according to each strategy was then compared to the 
results reported as the main finding. As shown in Fig. 6E, only the 
Cumulative and Best N-back models improved the estimated AUROCs 
for both sessions. On average, the number of trials in this latter model 
was 31.5  ±  7.5 trials for the cloud-size session and 26.6  ±  7.9 trials 
for the velocity-stability session (Fig. 6F). Overall, the improvement in 
the AUROC was only marginal (a maximum of 2% for any model), in-
dicating that accounting for performance fluctuations, as a proxy for 
fluctuations in the average-performance criterion, did little to improve 
the understanding of the sensorimotor confidence computation. 

2.2.6. Summary 
In Experiment 1, we measured sensorimotor confidence for visuo-

motor tracking, under both cloud-size and velocity-stability manipula-
tions of difficulty, to address the three goals of this study. A robust 
AUROC statistic, that quantified the ability of the confidence judge-
ments to distinguish objectively good from bad tracking, indicated that 
confidence judgements were made with comparable above-chance 
metacognitive sensitivity for both difficulty manipulations. 
Furthermore, a temporal analysis revealed a recency effect, where 

tracking error later in the trial was found to disproportionately influ-
ence sensorimotor confidence. We propose that this is due to imperfect 
performance monitoring and not prospective confidence based on 
heuristic cues to difficulty (i.e., cloud size, velocity stability). 

3. Experiment 2 

The goal of Experiment 2 was to further investigate the recency 
effect. To this end, we repeated the task keeping the stimulus statistics 
fixed (σcloud and σwalk) and instead varied the duration of the stimulus 
presentation in an interleaved design. This made the time when the 
sensorimotor-confidence judgement was required less predictable. 
Thus, participants would be encouraged to sample error evidence for 
their confidence throughout the trial instead of waiting until the final 
portion of the stimulus duration. If a response-expectation strategy was 
the cause of the recency effect, we would expect to see flatter temporal 
AUROCs for this mixed-duration design. Otherwise, if the recency effect 
is due to a processing limitation of sensorimotor confidence, we would 
expect error in the last few seconds to largely determine sensorimotor 
confidence regardless of the duration condition. Additionally, this ex-
periment allowed us to investigate sensorimotor confidence in the 
context of a fixed difficulty setting that encourages participants to 
monitor their performance. This is because prospective judgements of 
confidence, based on cues to sensorimotor uncertainty, are unin-
formative when the stimulus statistics are unchanging. 

3.1. Methods 

3.1.1. Participants 
There were seven new participants in Experiment 2 (21–31 years 

old, one left-handed, four female). All participants had normal or cor-
rected-to-normal vision and no self-reported motor abnormalities. 
Participants were naive to the purpose of the studies except one author. 
Prior to the experiment, the task was described to the participants and 
consent forms were collected. Participants were tested in accordance 
with the ethics requirements of the Institutional Review Board at New 
York University. 

3.1.2. Apparatus 
All experiments were conducted on a Mac LCD monitor (Apple, 

Cupertino, CA; late 2013 version, 60 × 34 cm, 1920 × 1080 pixels, 
60 Hz), with participants seated 57 cm from the monitor. Participants 
operated a Kensington M01215 wired optical mouse (60 Hz sampling 
rate, standard acceleration profile for Mac OS X) with their right hand 
when manually tracking the stimulus. Subjective performance evalua-
tions were collected on a standard computer keyboard. Experiments 
were conducted using custom-written code in MATLAB version R2014a 
(The MathWorks, Natick, MA), using Psychtoolbox version 3.0.12 
(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). 

3.1.3. Task 
Stimulus presentation duration was manipulated with an inter-

leaved design and three levels (6, 10, and 14 s) while the stimulus 
statistics remained fixed at σcloud = 2 deg and σwalk = 0.15 deg/s. Data 
were collected over three 1-hour sessions, with each session composed 
of 15 training trials (5 per duration, randomised order) followed by 225 
test trials (75 per duration, randomised order). Again, after each sti-
mulus presentation, participants rated their subjective sense of their 
tracking performance as either “better” or “worse” than their session 
average. As shown in Experiment 1, tracking before 2 s in this task has a 
different error profile, due to the target and cursor both starting at the 
same location from stationary (Fig. 4D). We opted to not count these 
initial 2 s of tracking in the final score so that trial duration could not 
serve as a difficulty manipulator in this experiment (e.g., a 6 s trial is 
more likely to have lower RMSE than a 14 s trial). In order to signal 
when the tracking contributed to the final score, the cursor was initially 
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red (not contributing) and switched to green (contributing to the score) 
after 2 s. Furthermore, to ensure that all trials had the same stimulus 
statistics (e.g., position on screen, velocity), all trajectories were in-
itially sampled as a 14 s stimulus and accepted or rejected before being 
temporally truncated to 6 or 10 s if the duration condition required. For 
example, this prevented an over-representation in shorter-duration 
trials of the target approaching the screen boundaries quickly or rapidly 
accelerating after trial onset. Note that, as in Experiment 1, the criterion 
for rejecting trajectories was based on proximity of the target to the 
screen edge; any trajectory was resampled if at any point during the 
14 s the target moved closer than 2 × σcloud to the edge. Tracking 
performance was scored and feedback given in the same manner as the 
previous experiment. 

3.2. Results 

In Experiment 2, we manipulated the duration of stimulus pre-
sentation with three interleaved conditions of 6, 10, or 14 s. The con-
sequence of duration on objective tracking performance was a small 
increase in RMSE for longer durations (Fig. 7A). The sensorimotor 
confidence judgements also showed slightly lower metacognitive ac-
curacy (Fig. 7B) and sensitivity (Fig. 7C) for longer durations. Overall, 
the average AUROC from pooling data across durations was 
0.68  ±  0.04 SEM (Fig. 7D) and all participants had above chance 
metacognitive sensitivity according to bootstrapped confidence inter-
vals calculated as per the same procedure as Experiment 1. When split 
by session, the AUROCs were 0.68  ±  0.04, 0.68  ±  0.03, and 
0.71  ±  0.02, suggesting that metacognitive performance was rela-
tively unchanging across the sessions. Note that for these analyses we 
discarded the initial 2 s of tracking that the participants were instructed 
to ignore. 

Fig. 7E shows the temporal profile of metacognitive sensitivity for 
each duration as well as the results from Experiment 1. Participants 
were instructed to ignore tracking error occurring before 2 s, when the 
cursor changed colour, for estimating sensorimotor confidence, and we 
observed low metacognitive sensitivity for these time points. Due to 
RMSE being partially correlated between adjacent time bins (Fig. 4F), 
slightly elevated sensitivity for the time bin at 2 s does not necessarily 
indicate non-compliance with task instructions. For the remainder of 
the trial, later time points tend to have higher metacognitive sensitivity, 
consistent with the recency effect observed in Experiment 1. The 
steepness of the temporal AUROC was also greater for shorter trial 
durations. This is to be expected as the contribution of a 1 s time bin to 
the final RMSE is greater when the trial is short. A recency effect is also 
consistent with the observed lower overall metacognitive performance 
for longer durations, because a smaller percentage of the total error 
signal contributes to sensorimotor confidence. 

We attempted to compare the temporal AUROCs quantitatively with 
mixed success (see Supplementary Information). We found evidence for 
a stronger recency effect for Experiment 2 than Experiment 1. 
Furthermore, in our supplementary analyses, accounting for the re-
cency effect and/or external noise via our perceptual model in Fig. 5A 
gave little benefit when attempting to predict sensorimotor confidence 
for either experiment (at most ~2% increase in predictive accuracy). 
However, we caution against strong conclusions from these supple-
mentary analyses as certain properties of the obtained data set were not 
ideal for these quantitative model fits. 

In sum, we replicated the recency effect of Experiment 1 for all 
stimulus durations. Thus the final few seconds of tracking had the 
greatest influence on sensorimotor confidence regardless of whether the 
participant knew when the stimulus presentation would terminate. This 
suggests that response expectation is unlikely to be the source of the 

Fig. 7. Effect of variable stimulus-presentation duration on tracking error and sensorimotor confidence in Experiment 2 (n = 7). A: Mean objective tracking 
performance for each duration condition averaged across observers. B: Sensorimotor-confidence accuracy for each duration condition. C: Metacognitive sensitivity 
for each duration condition. D: ROC-style curves for individual participants for AUROC pooled across durations. Dashed line: the no-sensitivity lower bound. Error 
before 2 s was excluded from the calculations in panels A-D. E: Temporal AUROCs calculated for 1 s time bins for each duration condition averaged across 
participants for Experiment 2 (black). For comparison, the results in Fig. 4A are replotted (orange: cloud-size session; blue: velocity-stability session). The recency 
effect found in Experiment 1 is replicated here for Experiment 2. Vertical dashed line at 2 s indicates the timing of cursor colour-change cue to begin evaluating 
tracking. Horizontal dashed line: the no-sensitivity line. Error bars in all graphs are SEM. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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recency effect. 

4. Discussion 

In two experiments, participants completed a visuomotor tracking 
task where trials were followed by a sensorimotor confidence judge-
ment of “better” or “worse” than average tracking performance. We 
calculated the degree to which these judgements predicted objective 
tracking for manipulations of task difficulty (Experiment 1) and trial 
duration (Experiment 2), with an AUROC metacognitive-sensitivity 
statistic that ranged from no sensitivity at 0.5 and perfect sensitivity at 
1. In both experiments we found above-chance metacognitive sensi-
tivity and a temporal profile that suggested that error later in the trial 
contributed more to sensorimotor confidence. 

4.1. Performance monitoring 

Our primary aim was to establish if humans would actively monitor 
their own performance to judge sensorimotor confidence. An alternate 
strategy would have been to use cues to uncertainty (e.g., cloud size) to 
predict task difficulty and thus the likelihood of performing well. From 
our experiments, we found several indicators of performance mon-
itoring. First, in Experiment 1, we manipulated task difficulty system-
atically with two methods, varying either the cloud-size parameter 
(σcloud) or the velocity stability parameter (σwalk) of the procedure to 
generate our dynamic stimulus. The manipulation of σcloud was very 
noticeable, with all participants reporting the stimulus manipulation in 
their debriefing interviews, whereas varying σwalk was more subtle and 
participants had difficulty identifying the manipulation (supplementary 
media files are provided to illustrate the difficulty manipulations). 
Thus, if the strategy was to rely exclusively on cues to uncertainty, and 
given that the manipulations had sizeable and comparable effects on 
tracking performance, we would expect higher metacognitive sensi-
tivity for the cloud-size session than the velocity-stability session. We 
did not find supporting evidence for this hypothesis as there was no 
significant difference in sensitivity between the sessions. 

Stronger supporting evidence for performance monitoring was 
found in Experiment 2, where task difficulty was kept the same for all 
trials by fixing the stimulus statistics. In this scenario, there are no 
explicit uncertainty cues for the participant to use. Yet, metacognitive 
sensitivity was slightly better than that observed in Experiment 1 
(AUROC of 0.68 in Experiment 2 versus 0.64 for cloud-size and 0.64 for 
velocity-stability in Experiment 1). However, several factors complicate 
direct comparisons. Variability in tracking performance is not the same 
for fixed- and variable-difficulty designs; RMSE differences are likely to 
be lower for a fixed-difficulty design, complicating the comparison. 
Furthermore, the difficulty manipulation in Experiment 1 may have 
permitted a mixed strategy, combining performance monitoring and 
uncertainty heuristics. Thus, our results from Experiment 2 supporting 
the performance-monitoring hypothesis are a better indicator of how 
well performance monitoring captures true tracking performance than 
the results of Experiment 1. 

The best evidence for performance monitoring is the recency effect 
we observed in both experiments. We found that sensorimotor con-
fidence was most influenced by the error in last few seconds of the trial. 
Such a result is unlikely from the prospective use of uncertainty cues 
because it shows that the error occurring during the trial matters, with 
some moments being treated differently from others. That is, for the 
cloud-size session, all time points equally signal the uncertainty from 
cloud size, so there is no reason that the final seconds should be pri-
vileged. Similarly, for the velocity-stability session, the behaviour of the 
target would have to be observed for some period of time to assess 
velocity stability, but this could be done at any point during the trial. 
One possibility is that participants were waiting until the end of the 
trial to make these assessments, but the results of Experiment 2 argue 
against this, as the recency effect was still found when stimulus- 

presentation duration was randomised. If instead participants were 
using some other heuristic strategy (e.g., average velocity, amount of 
leftward motion, etc.), this would also not produce a recency effect 
unless it predicted performance later in the trial but not early perfor-
mance. From an information-processing standpoint, performance 
monitoring is likely to exhibit temporal sub-optimalities due to either 
leaky accumulation of the error signal during tracking (Busemeyer & 
Townsend, 1993; Smith & Ratcliff, 2004) or the temporal limitations of 
memory for retrospective judgements (Atkinson & Shiffrin, 1968;  
Davelaar et al., 2005). 

Before we examine the recency effect, we first comment on the 
possibility of a mixed strategy of performance monitoring and un-
certainty-cue heuristics. Metacognitive judgements based on a mixed 
strategy combining actual performance and cues to uncertainty have 
been reported for sensorimotor confidence (Mole et al., 2018), motor- 
awareness confidence (Charles et al., 2020), and perceptual confidence 
(De Gardelle & Mamassian, 2015; Spence et al., 2015), with some ex-
ceptions (e.g., Barthelmé & Mamassian, 2010). Yet, it is unclear if a 
mixed strategy was used in Experiment 1 of the present study. The 
anecdotal differences in detecting the difficulty manipulations (cloud- 
size obvious, velocity-stability subtle) coupled with comparable meta-
cognitive performance in these sessions lends support to a performance- 
monitoring strategy, but are weak evidence as difficulty detectability 
was not rigorously tested. An ideal test for use of a mixed strategy 
would involve keeping performance constant by fixing the difficulty 
while also varying likely uncertainty cues (e.g., titrating the mean and 
variability of the sensory signal; De Gardelle & Mamassian, 2015;  
Spence et al., 2015). This is more difficult in sensorimotor tasks as 
motor variability will introduce noise into the error signal, hindering 
any attempt to match performance. One way around this problem 
would be to have participants judge sensorimotor confidence for re-
plays of previously completed tracking and artificially adjust un-
certainty cues. However, this would rely on metacognition acting si-
milarly for active tracking and passive viewing, which has only been 
confirmed for motor-awareness confidence (Charles et al., 2020). 

Finally, we acknowledge that the current study is limited in that it is 
unable to answer how participants are achieving performance mon-
itoring. We cannot separate the contribution of visual information, 
knowledge of motor commands, and proprioception to the confidence 
judgements. This is because motor uncertainty could be directly as-
sessed in our task by visually inspecting the movements of the cursor, 
making it possible that visual information was actually the primary cue 
used in our task. The contribution of visual information could be ad-
dressed to some extent if we replicated the experiments under poor 
viewing conditions, or by asking participants to track a stimulus in a 
different sensory modality, or after removing the cursor altogether. 
However, changing these experimental conditions would entail taking 
into account the potential increase in attentional resources required to 
perform well, the lower sensitivity to other sensory modalities, and the 
role of the sense of agency. While all these issues are important to 
understand how individual cues to sensorimotor performance influence 
confidence, they are beyond the scope of the present study. 

4.2. The recency effect 

In the sensorimotor feedback process, incoming error signals inform 
upcoming action plans and quickly become irrelevant (Bonnen et al., 
2015; Todorov, 2004). In contrast, the goal of performance monitoring 
for sensorimotor confidence is to accumulate error signals across time, 
much like the accumulation of sensory evidence for perceptual deci-
sions with a fixed viewing time. In fact, in the accumulation-of-evidence 
framework, considerable effort has been made to incorporate a recency 
bias termed “leaky accumulation” (Brunton et al., 2013; Busemeyer & 
Townsend, 1993; Matsumori et al., 2018; Usher & McClelland, 2001). 
The main arguments for including a temporal-decay component is to 
account for memory limitations of the observer (e.g., from neural limits 

S.M. Locke, et al.   Cognition 205 (2020) 104396

11



of recurrent excitation) or intentional forgetting for adaptation in vo-
latile environments (Nassar et al., 2010; Norton et al., 2019; Usher & 
McClelland, 2001). For our task, memory constraints are a more likely 
explanation of the recency effect than intentional forgetting, because 
we have long trials of 6–14 s with no changes of stimulus statistics 
during a trial. One contributor to the error signal we have no control 
over, however, is the participant's motivation to do the task. Even 
though tracking performance was constant when averaged across trials, 
fluctuations in motivation during a trial could lead to fluctuations in 
sensorimotor performance that do cause volatility in the error signal. 
Thus, alternating between bouts of good and poor performance could 
bias the participant to be more forgetful. 

Previous efforts to characterise the time course of a metacognitive 
judgement have been limited to the perceptual domain. Using the re-
verse-correlation technique, Zylberberg et al. (2012) measured the 
temporal weighting function for confidence in two perceptual tasks and 
found a primacy effect: the initial hundreds of milliseconds of stimulus 
presentation had the greatest influence on perceptual confidence. Their 
finding and associated modelling suggests evidence accumulation for 
the metacognitive judgement stops once an internal bound for decision 
commitment has been reached. Our results suggest that sensorimotor 
confidence does not follow the same accumulation-to-bound structure, 
otherwise early error would have been more predictive of confidence 
than late error. One reason we may not have found a primacy effect is 
that the participant interacts with the stimulus to produce the errors 
that determine performance, allowing them a sense of agency that they 
can change or modify performance. As a result, there is no reason to 
settle on a confidence judgement based on initial performance. A con-
tradictory finding to Zylberberg et al. (2012) is that sensory evidence 
late in the trial, during the period between the sensory decision and the 
metacognitive decision, can influence perceptual confidence in what is 
termed post-accumulation of evidence (Pleskac & Busemeyer, 2010), 
but this finding is hard to apply to our visuomotor task. Evaluating 
tracking is different from a single perceptual decision, because tracking 
is a series of motor-planning decisions (Wolpert & Landy, 2012). The 
error signal used to plan the next tracking movement is also the feed-
back of the error from the last moment of tracking. Additionally, sub-
sequent estimates of target location could theoretically provide addi-
tional information about previous locations of the target. Identifying 
the source of the error signal for sensorimotor confidence, either by 
computational modelling or brain imaging, would help clarify the 
nature of the accumulation process. 

So far we have considered an online computation of sensorimotor 
confidence that accompanies sensorimotor decision making. Another 
alternative is that the evaluation of performance is computed retro-
spectively. Baranski and Petrusic (1998) showed that reaction times for 
confidence responses differed for speeded and unspeeded perceptual 
decisions, leading to the conclusion that perceptual confidence is 
computed online unless time pressure forces it to be evaluated retro-
spectively. It is reasonable to assume that the continual demand of 
cursor adjustment to track an unpredictable stimulus is taxing, leaving 
participants no choice but to introspect on their performance upon 
termination of the trial. If this were the case, we would likely see 
temporal biases consistent with memory retrieval. In the memory lit-
erature, there has been extensive evidence of both primacy and recency 
effects, which are thought to be associated with long-term and short- 
term memory processes respectively (Atkinson and Shiffrin, 1968;  
Innocenti et al., 2013). Thus, the observed recency effect in our ex-
periment could be interpreted as short-term memory limitations con-
straining the time constant. Another reason observers may delay per-
formance evaluation until after the trial is because tracking is typically 
a goal-directed behaviour, which can be evaluated by its success (e.g., 
catching the prey after a chase, hitting the target in a first-person 
shooter game, or correctly intercepting a hand in a handshake). Still, 
one may want to introspect about performance while tracking to decide 
whether the tracking was in vain. We did not incentivise participants to 

adopt a particular strategy in the task, so they may have treated error 
towards the end of the trial as their success in “catching” the target. 

4.3. Metacognitive efficiency 

We quantified metacognitive sensitivity for sensorimotor tracking 
with an AUROC metric that reflected the separation of the objective- 
performance distributions conditioned on sensorimotor confidence. 
This approach superficially shares some similarities with the metacog-
nitive metric meta-d′ in perceptual confidence. For meta-d′, an ROC 
curve, relating the probability of a confidence rating conditioned on 
whether the observer was correct vs. incorrect, is computed as part of 
the analysis to obtain a bias-free sensitivity metric that reflects the 
observer's ability to distinguish between correct and incorrect percep-
tual responses (Fleming & Lau, 2014; Mamassian, 2016). However, the 
area under this ROC curve (AUROC) has little meaning, as it is highly 
dependent on the sensitivity of the primary perceptual judgement 
(Galvin et al., 2003). Instead, the appropriate comparison is between 
the perceptual sensitivity, d′, and the metacognitive sensitivity, meta-d′. 
Typically, a ratio of these sensitivities is computed, with a value of 1 
being considered ideal metacognitive efficiency (i.e., the best the ob-
server can do given the identical sensory evidence available for the 
metacognitive judgement as the perceptual judgement). Empirically, 
ratios less than 1 are most often observed, indicating less efficient, more 
noisy decision-making at the metacognitive level (Maniscalco & Lau, 
2012, 2016). 

The purpose of our AUROC metric is not to quantify how well the 
sensory information is used for the sensorimotor control versus sen-
sorimotor confidence, but as a non-parametric way of quantifying how 
sensitive an observer is to their true performance. The metric ranges 
from no sensitivity (i.e., chance performance) at 0.5 to perfect classi-
fication performance at 1. As with perceptual confidence, we do expect 
that the AUROC will depend to some degree on the variance in the 
performance of the primary task (e.g., tracking), even if it wasn't ob-
served in our task. For example, if there is little variance, then it should 
be difficult to identify well executed from poorly executed trials, 
whereas a large variance means performance could be more easily ca-
tegorised. A second use of the AUROC metric was to quantify the degree 
to which a model of metacognitive behaviour could predict sensor-
imotor confidence (see Supplementary Information). By replacing the 
objective-performance axis with an internal decision-variable axis ac-
cording to a model, a model's explanatory power can be measured on a 
scale from none at 0.5 to perfect at 1. While we were unsuccessful at 
improving performance more than 2% in any of our experiments, which 
we did by accounting for both the recency effect and the effect of ex-
ternal sensory noise instead of simply computing RMSE using the true 
target location, the method of analysis nicely complemented our goal of 
quantifying how well sensorimotor confidence reflected objective per-
formance. 

We examined metacognitive efficiency by determining what error 
information contributed to sensorimotor confidence. The recency effect 
we observed constitutes an inefficiency in that not all information used 
for the primary sensorimotor decision-making was used for the meta-
cognitive judgement as was instructed. Based on the similarity in shape 
of the recency effect for the duration conditions of Experiment 2, we 
can conclude that efficiency is inversely proportional to the duration of 
tracking. However, given long, multi-action sequences, it is not that 
surprising to find that some part of the perceptual information about 
error is lost. Some amount of forgetting is likely advantageous in real- 
world scenarios. For future metacognitive studies of action, it would be 
informative to examine estimates of sensorimotor confidence during 
action and how sensorimotor confidence interacts with goal planning, 
explicit learning, and expertise. For example, it would be worthwhile to 
investigate how sensorimotor confidence relates to cognitive control 
functions such as switching or abandoning motor tasks (Alexander & 
Brown, 2010), or how athletes and novices judge sensorimotor 
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confidence (MacIntyre et al., 2014). 

4.4. Conclusion 

In sum, we found considerable evidence that humans are able to 
compute sensorimotor confidence, that is, they are able to monitor their 
sensorimotor performance in relationship to a goal. However, they do 
so inefficiently, disproportionately weighting the tracking error at the 
end of the trial to judge whether their performance was better than 
average. We replicated this recency effect with unpredictable stimulus 
presentation durations to confirm that it was not the result of a re-
sponse-preparation strategy. In our analyses, we have introduced the 
AUROC statistic, which we found useful for two purposes. First, it al-
lowed us to quantify the relationship between sensorimotor confidence 
and objective tracking performance, and second, it provided a model-fit 
metric for elaborated decision models. Our results, obtained from a 
relatively simple goal of visuomotor tracking, raise many questions for 
future studies on sensorimotor confidence. For example, is the recency 
effect a key characteristic of sensorimotor confidence? And, does it 
result from leaky online evidence accumulation or biased retrospective 
memory retrieval? What factors determine the strength of the recency 
effect for sensorimotor confidence (i.e., attention, sensorimotor goals, 
etc.)? Further work will help provide a clearer link between models of 
sensorimotor behaviour and models of sensorimotor metacognition. 
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